Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease.
نویسندگان
چکیده
Phosphatidylserine decarboxylase, which is embedded in the inner mitochondrial membrane, synthesizes phosphatidylethanolamine (PE) and, in some cells, synthesizes the majority of this important phospholipid. Normal levels of PE can decline with age in the brain. Here we used yeast and worms to test the hypothesis that low levels of PE alter the homeostasis of the Parkinson disease-associated protein α-synuclein (α-syn). In yeast, low levels of PE in the phosphatidylserine decarboxylase deletion mutant (psd1Δ) cause decreased respiration, endoplasmic reticulum (ER) stress, a defect in the trafficking of the uracil permease, α-syn accumulation and foci, and a slow growth phenotype. Supplemental ethanolamine (ETA), which can be converted to PE via the Kennedy pathway enzymes in the ER, had no effect on respiration, whereas, in contrast, this metabolite partially eliminated ER stress, decreased α-syn foci formation, and restored growth close to that of wild-type cells. In Caenorhabditis elegans, RNAi depletion of phosphatidylserine decarboxylase in dopaminergic neurons expressing α-syn accelerates neurodegeneration, which supplemental ETA rescues. ETA fails to rescue this degeneration in worms that undergo double RNAi depletion of phosphatidylserine decarboxylase (psd-1) and choline/ETA phosphotransferase (cept-1), which encodes the last enzyme in the CDP-ETA Kennedy pathway. This finding suggests that ETA exerts its protective effect by boosting PE through the Kennedy pathway. Overall, a low level of PE causes ER stress, disrupts vesicle trafficking, and causes α-syn to accumulate; such cells likely die from a combination of ER stress and excessive accumulation of α-syn.
منابع مشابه
Lipid disequilibrium in biological membranes, a possible pathway to neurodegeneration
We recently reported that knocking down the enzyme phosphatidylserine decarboxylase, which synthesizes the phospholipid phosphatidylethanolamine (PE) in mitochondria, perturbs the homeostasis of the human Parkinson disease (PD) protein α-synuclein (expressed in yeast or worms). In yeast, low PE in the psd1Δ deletion mutant induces α-synuclein to enter cytoplasmic foci, the level of this protein...
متن کاملChemical Compensation of Mitochondrial Phospholipid Depletion in Yeast and Animal Models of Parkinson’s Disease
We have been investigating the role that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) content plays in modulating the solubility of the Parkinson's disease protein alpha-synuclein (α-syn) using Saccharomyces cerevisiae and Caenorhabditis elegans. One enzyme that synthesizes PE is the conserved enzyme phosphatidylserine decarboxylase (Psd1/yeast; PSD-1/worms), which is lodged in th...
متن کاملMolecular Determinant of α-Synuclein Pathotoxicity in Yeast Models
Parkinson disease (PD) is an incurable neurodegenerative disorder linked to the misfolding and aggregation of α-synuclein protein in dying neurons. Several molecular features of α-synuclein that appear to contribute to its properties are the familial mutant E46K, serine phosphorylation, and hydrophobic residues, but their exact role is unclear. I used two yeast models to examine how the E46K mu...
متن کاملThe Parkinson’s disease-associated protein α-synuclein disrupts stress signaling - a possible implication for methamphetamine use?
The human neuronal protein α-synuclein (α-syn) has been linked by a plethora of studies as a causative factor in sporadic Parkinson's disease (PD). To speed the pace of discovery about the biology and pathobiology of α-syn, organisms such as yeast, worms, and flies have been used to investigate the mechanisms by which elevated levels of α-syn are toxic to cells and to screen for drugs and genes...
متن کاملPhosphorylation and Alanine-76 Contribute to α-Synuclein’s Plasma Membrane Binding and Aggregation
Parkinson’s disease (PD) is an incurable neurodegenerative disease, which afflicts nearly 4 million people worldwide. The hallmark symptom of PD is the formation of Lewy bodies containing aggregated, phosphorylated, and membrane phospholipid associated α-synuclein. The molecular determinants for α-synuclein aggregation and membrane association are still unknown. Past studies suggest that alanin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 38 شماره
صفحات -
تاریخ انتشار 2014